If it's not what You are looking for type in the equation solver your own equation and let us solve it.
3x^2+19x-424=0
a = 3; b = 19; c = -424;
Δ = b2-4ac
Δ = 192-4·3·(-424)
Δ = 5449
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(19)-\sqrt{5449}}{2*3}=\frac{-19-\sqrt{5449}}{6} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(19)+\sqrt{5449}}{2*3}=\frac{-19+\sqrt{5449}}{6} $
| 2(x-2)=9-3+6+8+3+7 | | 3(2v^2-4v+1)=0 | | 2(6x-7)=15x-9 | | 3-x-59=93 | | 6v^2=-3+12v | | 1=6x-5-3x | | 9.3+56x=261 | | 7.2*m=–10.8 | | 7.2m=–10.8 | | 3=16t^2+256t+1680 | | 104=4(5r+6) | | 3z÷10-5=5 | | -12x-10=40 | | x^2-6x-343=0 | | 8=4-5x+4 | | 15+4y=80 | | 40-48x=328 | | -3+-4x=29 | | 5(c+8)+c+3=1 | | -4r-5r=0 | | 5(c+8)+c=3 | | (4x)^2/3=64 | | 0.4x=15 | | u+21=7u+6 | | 0=-16t^2+150t+70 | | 3(s+22)=4(s+12 | | N^2=84-6n | | (10x6)(10x8)=10^10 | | 84=30+6w | | (7/5x)+(8/3x)=0 | | M^2+84=-8m | | 12=5x+5 |